top of page

Found Pilates Magazi Group

Public·8 members

Install Mysql Using Inno Setup Tasks ((HOT))

Valid only in an [UninstallRun] section. If the same application is installed more than once, "run" entries will be duplicated in the uninstall log file. By assigning a string to RunOnceId, you can ensure that a particular [UninstallRun] entry will only be executed once during uninstallation. For example, if two or more "run" entries in the uninstall log have a RunOnceId setting of "DelService", only the latest entry with a RunOnceId setting of "DelService" will be executed; the rest will be ignored. Note that RunOnceId comparisons are case-sensitive. If you don't assign a string to RunOnceId, the compiler will warn you about this, which can be disabled using MissingRunOnceIdsWarning.

Install Mysql Using Inno Setup Tasks

By default dotConnect for MySQL installs all files in "Program Files\Devart\dotConnect\MySQL" folder.The setup program also adds the necessary assemblies to the Global Assembly Cache by default. You can omit adding assemblies to GAC by selecting the Do not install assemblies in the GAC check box on the Additional Tasks installation wizard page.To install only *.dll files needed to run applicationsthat use dotConnect for MySQL, you can select "Minimal" install in the setup program.

System variables that are true or false can be enabled at server startup by naming them, or disabled by using a --skip- prefix. For example, to enable or disable the InnoDB adaptive hash index, you can use --innodb-adaptive-hash-index or --skip-innodb-adaptive-hash-index on the command line, or innodb_adaptive_hash_index or skip_innodb_adaptive_hash_index in an option file.

The file is not created by default. To create it, start mysqld with the --innodb-status-file option. InnoDB removes the file when the server is shut down normally. If an abnormal shutdown occurs, the status file may have to be removed manually.

innodb_api_disable_rowlock is not dynamic. It must be specified on the mysqld command line or entered in the MySQL configuration file. Configuration takes effect when the plugin is installed, which occurs when the MySQL server is started.

Enabling this option permits multiple buffer pool instances when the buffer pool is less than 1GB in size, ignoring the 1GB minimum buffer pool size constraint imposed on innodb_buffer_pool_instances. The innodb_buffer_pool_debug option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

If the doublewrite buffer is located on a Fusion-io device that supports atomic writes, the doublewrite buffer is automatically disabled and data file writes are performed using Fusion-io atomic writes instead. However, be aware that the innodb_doublewrite setting is global. When the doublewrite buffer is disabled, it is disabled for all data files including those that do not reside on Fusion-io hardware. This feature is only supported on Fusion-io hardware and is only enabled for Fusion-io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method setting of O_DIRECT is recommended.

By default, setting innodb_fil_make_page_dirty_debug to the ID of a tablespace immediately dirties the first page of the tablespace. If innodb_saved_page_number_debug is set to a non-default value, setting innodb_fil_make_page_dirty_debug dirties the specified page. The innodb_fil_make_page_dirty_debug option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

Log flushing frequency is controlled by innodb_flush_log_at_timeout, which allows you to set log flushing frequency to N seconds (where N is 1 ... 2700, with a default value of 1). However, any unexpected mysqld process exit can erase up to N seconds of transactions.

The innodb_io_capacity variable defines the number of I/O operations per second (IOPS) available to InnoDB background tasks, such as flushing pages from the buffer pool and merging data from the change buffer.

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/O operations per second (IOPS) than defined by the innodb_io_capacity variable. The innodb_io_capacity_max variable defines a maximum number of IOPS performed by InnoDB background tasks in such situations.

The innodb_log_spin_cpu_pct_hwm variable respects processor affinity. For example, if a server has 48 cores but the mysqld process is pinned to only four CPU cores, the other 44 CPU cores are ignored.

Enables the NUMA interleave memory policy for allocation of the InnoDB buffer pool. When innodb_numa_interleave is enabled, the NUMA memory policy is set to MPOL_INTERLEAVE for the mysqld process. After the InnoDB buffer pool is allocated, the NUMA memory policy is set back to MPOL_DEFAULT. For the innodb_numa_interleave option to be available, MySQL must be compiled on a NUMA-enabled Linux system.

The number of page cleaner threads that flush dirty pages from buffer pool instances. Page cleaner threads perform flush list and LRU flushing. When there are multiple page cleaner threads, buffer pool flushing tasks for each buffer pool instance are dispatched to idle page cleaner threads. The innodb_page_cleaners default value is 4. If the number of page cleaner threads exceeds the number of buffer pool instances, innodb_page_cleaners is automatically set to the same value as innodb_buffer_pool_instances.

For both 32KB and 64KB page sizes, the maximum row length is approximately 16000 bytes. ROW_FORMAT=COMPRESSED is not supported when innodb_page_size is set to 32KB or 64KB. For innodb_page_size=32KB, extent size is 2MB. For innodb_page_size=64KB, extent size is 4MB. innodb_log_buffer_size should be set to at least 16M (the default) when using 32KB or 64KB page sizes.

When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded in the mysqld error log. Otherwise, you see information about only the last deadlock, using the SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily an issue, because InnoDB detects the condition immediately and rolls back one of the transactions automatically. You might use this option to troubleshoot why deadlocks are occurring if an application does not have appropriate error-handling logic to detect the rollback and retry its operation. A large number of deadlocks might indicate the need to restructure transactions that issue DML or SELECT ... FOR UPDATE statements for multiple tables, so that each transaction accesses the tables in the same order, thus avoiding the deadlock condition.

Previously, enabling the innodb_read_only system variable prevented creating and dropping tables only for the InnoDB storage engine. As of MySQL 8.0, enabling innodb_read_only prevents these operations for all storage engines. Table creation and drop operations for any storage engine modify data dictionary tables in the mysql system database, but those tables use the InnoDB storage engine and cannot be modified when innodb_read_only is enabled. The same principle applies to other table operations that require modifying data dictionary tables. Examples:

Saves a page number. Setting the innodb_fil_make_page_dirty_debug option dirties the page defined by innodb_saved_page_number_debug. The innodb_saved_page_number_debug option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted transaction that deletes rows from a table, InnoDB excludes records that are delete-marked when calculating row estimates and index statistics, which can lead to non-optimal execution plans for other transactions that are operating on the table concurrently using a transaction isolation level other than READ UNCOMMITTED. To avoid this scenario, innodb_stats_include_delete_marked can be enabled to ensure that InnoDB includes delete-marked records when calculating persistent optimizer statistics.

If you do not want InnoDB to use more than a certain number of virtual CPUs for user threads (20 virtual CPUs, for example), set innodb_thread_concurrency to this number (or possibly lower, depending on performance testing). If your goal is to isolate MySQL from other applications, consider binding the mysqld process exclusively to the virtual CPUs. Be aware, however, that exclusive binding can result in non-optimal hardware usage if the mysqld process is not consistently busy. In this case, you can bind the mysqld process to the virtual CPUs but allow other applications to use some or all of the virtual CPUs.

From an operating system perspective, using a resource management solution to manage how CPU time is shared among applications may be preferable to binding the mysqld process. For example, you could assign 90% of virtual CPU time to a given application while other critical processes are not running, and scale that value back to 40% when other critical processes are running.

A valid value is any directory path other than the MySQL data directory path. If the value is NULL (the default), temporary files are created MySQL temporary directory ($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by the --tmpdir configuration option). If a directory is specified, existence of the directory and permissions are only checked when innodb_tmpdir is configured using a SET statement. If a symlink is provided in a directory string, the symlink is resolved and stored as an absolute path. The path should not exceed 512 bytes. An online ALTER TABLE operation reports an error if innodb_tmpdir is set to an invalid directory. innodb_tmpdir overrides the MySQL tmpdir setting but only for online ALTER TABLE operations.

On platforms that support fdatasync() system calls, enabling the innodb_use_fdatasync variable permits using fdatasync() instead of fsync() system calls for operating system flushes. An fdatasync() call does not flush changes to file metadata unless required for subsequent data retrieval, providing a potential performance benefit. 350c69d7ab


Welcome to the group! You can connect with other members, ge...
bottom of page